Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Braz J Med Biol Res ; 55: e11635, 2022.
Article En | MEDLINE | ID: mdl-35137852

Hypovolemia induced by hemorrhage is a common clinical complication, which stimulates vasopressin (AVP) secretion by the neurohypophysis in order to retain body water and maintain blood pressure. To evaluate the role of brain L-glutamate and angiotensin II on AVP secretion induced by hypovolemia we induced hemorrhage (∼25% of blood volume) after intracerebroventricular (icv) administration of AP5, NBQX, or losartan, which are NMDA, AMPA, and AT1 receptor antagonists, respectively. Hemorrhage significantly increased plasma AVP levels in all groups. The icv injection of AP5 did not change AVP secretion in response to hemorrhage. Conversely, icv administration of both NBQX and losartan significantly decreased plasma AVP levels after hemorrhage. Therefore, the blockade of AMPA and AT1 receptors impaired AVP secretion in response to hemorrhage, suggesting that L-glutamate and angiotensin II acted in these receptors to increase AVP secretion in response to hemorrhage-induced hypovolemia.


Arginine Vasopressin , Hemorrhage , Receptor, Angiotensin, Type 1 , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid , Angiotensin II , Animals , Arginine Vasopressin/metabolism , Blood Pressure , Injections, Intraventricular , Male , Rats, Wistar , Receptor, Angiotensin, Type 1/metabolism
2.
Braz. j. med. biol. res ; 55: e11635, 2022. graf
Article En | LILACS-Express | LILACS | ID: biblio-1360232

Hypovolemia induced by hemorrhage is a common clinical complication, which stimulates vasopressin (AVP) secretion by the neurohypophysis in order to retain body water and maintain blood pressure. To evaluate the role of brain L-glutamate and angiotensin II on AVP secretion induced by hypovolemia we induced hemorrhage (∼25% of blood volume) after intracerebroventricular (icv) administration of AP5, NBQX, or losartan, which are NMDA, AMPA, and AT1 receptor antagonists, respectively. Hemorrhage significantly increased plasma AVP levels in all groups. The icv injection of AP5 did not change AVP secretion in response to hemorrhage. Conversely, icv administration of both NBQX and losartan significantly decreased plasma AVP levels after hemorrhage. Therefore, the blockade of AMPA and AT1 receptors impaired AVP secretion in response to hemorrhage, suggesting that L-glutamate and angiotensin II acted in these receptors to increase AVP secretion in response to hemorrhage-induced hypovolemia.

3.
Horm Behav ; 118: 104658, 2020 02.
Article En | MEDLINE | ID: mdl-31874139

The aim of the present study was to determine whether the TRPV1 channel is involved in the onset of sodium appetite. For this purpose, we used TRPV1-knockout mice to investigate sodium depletion-induced drinking at different times (2/24 h) after furosemide administration combined with a low sodium diet (FURO-LSD). In sodium depleted wild type and TRPV1 KO (SD-WT/SD-TPRV1-KO) mice, we also evaluated the participation of other sodium sensors, such as TPRV4, NaX and angiotensin AT1-receptors (by RT-PCR), as well as investigating the pattern of neural activation shown by Fos immunoreactivity, in different nuclei involved in hydromineral regulation. TPRV1 SD-KO mice revealed an increased sodium preference, ingesting a higher hypertonic cocktail in comparison with SD-WT mice. Our results also showed in SD-WT animals that SFO-Trpv4 expression increased 2 h after FURO-LSD, compared to other groups, thus supporting a role of SFO-Trpv4 channels during the hyponatremic state. However, the SD-TPRV1-KO animals did not show this early increase, and maybe as a consequence drank more hypertonic cocktail. Regarding the SFO-NaX channel expression, in both genotypes our findings revealed a reduction 24 h after FURO-LSD. In addition, there was an increase in the OVLT-NaX expression of SD-WT 24 h after FURO-LSD, suggesting the participation of OVLT-NaX channels in the appearance of sodium appetite, possibly as an anticipatory response in order to limit sodium intake and to induce thirst. Our work demonstrates changes in the expression of different osmo­sodium-sensitive channels at specific nuclei, related to the body sodium status in order to stimulate an adequate drinking.


Appetite/genetics , Brain/metabolism , Diet, Sodium-Restricted , Sodium, Dietary/administration & dosage , TRPV Cation Channels/physiology , Animals , Appetite/drug effects , Diet, Sodium-Restricted/adverse effects , Drinking/drug effects , Drinking/genetics , Eating/drug effects , Eating/genetics , Furosemide/pharmacology , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Sodium, Dietary/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Thirst/drug effects , Thirst/physiology
4.
Braz J Med Biol Res ; 52(10): e8491, 2019.
Article En | MEDLINE | ID: mdl-31618368

Considering the recognized role of thyroid hormones on the cardiovascular system during health and disease, we hypothesized that type 2 deiodinase (D2) activity, the main activation pathway of thyroxine (T4)-to-triiodothyronine (T3), could be an important site to modulate thyroid hormone status, which would then constitute a possible target for ß-adrenergic blocking agents in a myocardial infarction (MI) model induced by left coronary occlusion in rats. Despite a sustained and dramatic fall in serum T4 concentrations (60-70%), the serum T3 concentration fell only transiently in the first week post-infarction (53%) and returned to control levels at 8 and 12 weeks after surgery compared to the Sham group (P<0.05). Brown adipose tissue (BAT) D2 activity (fmol T4·min-1·mg ptn-1) was significantly increased by approximately 77% in the 8th week and approximately 100% in the 12th week in the MI group compared to that of the Sham group (P<0.05). Beta-blocker treatment (0.5 g/L propranolol given in the drinking water) maintained a low T3 state in MI animals, dampening both BAT D2 activity (44% reduction) and serum T3 (66% reduction in serum T3) compared to that of the non-treated MI group 12 weeks after surgery (P<0.05). Propranolol improved cardiac function (assessed by echocardiogram) in the MI group compared to the non-treated MI group by 40 and 57%, 1 and 12 weeks after treatment, respectively (P<0.05). Our data suggested that the beta-adrenergic pathway may contribute to BAT D2 hyperactivity and T3 normalization after MI in rats. Propranolol treatment maintained low T3 state and improved cardiac function additionally.


Adipose Tissue, Brown/metabolism , Adrenergic beta-Antagonists/administration & dosage , Iodide Peroxidase/metabolism , Myocardial Infarction/metabolism , Propranolol/administration & dosage , Thyroxine/blood , Triiodothyronine/blood , Adipose Tissue, Brown/drug effects , Animals , Disease Models, Animal , Iodide Peroxidase/drug effects , Male , Rats , Rats, Wistar , Thyroxine/drug effects , Triiodothyronine/drug effects , Iodothyronine Deiodinase Type II
5.
Exp Physiol ; 104(12): 1754-1761, 2019 12.
Article En | MEDLINE | ID: mdl-31553087

NEW FINDINGS: What is the central question of this study? Can Na+ depletion mobilize Na+ from the skin reservoir in ovariectomized rats? Does oestrogen replacement change the amount and the dynamics of skin Na+ storage? Is the reduced salt appetite after Na+ depletion in ovariectomized rats with oestrogen replacement related to changes in the skin Na+ ? What is the main finding and its importance? This work demonstrated that acute body Na+ depletion induced by frusemide mobilized the osmotically inactive skin Na+ reservoir to become osmotically active. Oestrogen treatment decreased the induced Na+ intake in ovariectomized rats but did not modulate the inactive Na+ reservoir in control conditions or its mobilization induced by Na+ depletion. ABSTRACT: Oestradiol, which is an important hormone for water and electrolyte balance, also has a role in the inhibition of induced Na+ appetite. Sodium can be stored in the skin in osmotically active or inactive forms, and this skin Na+ reservoir may be involved in the control of body Na+ levels during physiopathological challenges. In this study, we investigated whether the effect of sodium depletion by frusemide can mobilize Na+ from the skin reservoir and whether oestradiol replacement changes or mobilizes the Na+ reserves in the skin. Ovariectomized Wistar rats were treated with vehicle or oestradiol for 7 days to evaluate the effects of oestrogen on the hydroelectrolyte balance, intake responses and skin Na+ and water content in basal conditions. Furthermore, the effects of oestrogen were evaluated after 24 h frusemide-induced whole-body Na+ depletion. Oestradiol-replaced rats exhibited reduced water intake without any significant changes in salt intake, Na+ excretion or water and Na+ skin content in basal conditions. After sodium depletion, both vehicle- and oestradiol-treated rats exhibited an increase in the osmotically active skin Na+ , which was associated with a decrease of the inactive skin Na+ reservoir. Oestrogen decreased the hypertonic saline intake induced by Na+ depletion, but it was not associated with any significant changes in the skin Na+ reservoir. Thus, sodium depletion is able to change the inactive-active skin Na+ reservoir balance. However, the oestrogenic modulation of sodium appetite after Na+ depletion is probably not related to the action of this hormone in the skin Na+ reservoir balance.


Estradiol/pharmacology , Hyponatremia/chemically induced , Hyponatremia/metabolism , Skin/metabolism , Sodium Potassium Chloride Symporter Inhibitors/toxicity , Sodium/deficiency , Animals , Estradiol/therapeutic use , Female , Furosemide/toxicity , Hyponatremia/drug therapy , Ovariectomy/adverse effects , Ovariectomy/trends , Rats , Rats, Wistar , Skin/drug effects , Sodium Chloride, Dietary/administration & dosage
6.
Braz. j. med. biol. res ; 52(10): e8491, 2019. tab, graf
Article En | LILACS | ID: biblio-1039254

Considering the recognized role of thyroid hormones on the cardiovascular system during health and disease, we hypothesized that type 2 deiodinase (D2) activity, the main activation pathway of thyroxine (T4)-to-triiodothyronine (T3), could be an important site to modulate thyroid hormone status, which would then constitute a possible target for β-adrenergic blocking agents in a myocardial infarction (MI) model induced by left coronary occlusion in rats. Despite a sustained and dramatic fall in serum T4 concentrations (60-70%), the serum T3 concentration fell only transiently in the first week post-infarction (53%) and returned to control levels at 8 and 12 weeks after surgery compared to the Sham group (P<0.05). Brown adipose tissue (BAT) D2 activity (fmol T4·min-1·mg ptn-1) was significantly increased by approximately 77% in the 8th week and approximately 100% in the 12th week in the MI group compared to that of the Sham group (P<0.05). Beta-blocker treatment (0.5 g/L propranolol given in the drinking water) maintained a low T3 state in MI animals, dampening both BAT D2 activity (44% reduction) and serum T3 (66% reduction in serum T3) compared to that of the non-treated MI group 12 weeks after surgery (P<0.05). Propranolol improved cardiac function (assessed by echocardiogram) in the MI group compared to the non-treated MI group by 40 and 57%, 1 and 12 weeks after treatment, respectively (P<0.05). Our data suggested that the beta-adrenergic pathway may contribute to BAT D2 hyperactivity and T3 normalization after MI in rats. Propranolol treatment maintained low T3 state and improved cardiac function additionally.


Animals , Male , Rats , Propranolol/administration & dosage , Thyroxine/blood , Adipose Tissue, Brown/metabolism , Adrenergic beta-Agonists/administration & dosage , Iodide Peroxidase/metabolism , Myocardial Infarction/metabolism , Thyroxine/drug effects , Triiodothyronine/drug effects , Triiodothyronine/blood , Adipose Tissue, Brown/drug effects , Rats, Wistar , Disease Models, Animal , Iodide Peroxidase/drug effects
7.
J Neuroendocrinol ; : e12604, 2018 May 01.
Article En | MEDLINE | ID: mdl-29717520

The impairment in arginine vasopressin (AVP) secretion during sepsis is described in clinical and experimental studies and has been associated with oxidative stress, apoptosis, and diminished activation of hypothalamic neurons. Few studies have, however, assessed these abnormalities in sepsis survivors. Here we performed two sets of experiments on Wistar rats that had been subjected to sepsis by cecal ligation and puncture (CLP) or nonmanipulated (naive) as control. In the first set, tissues and blood were collected from survivor rats 10 days after CLP to quantify hypothalamic Bcl-2, cleaved caspase- 3 and synaptophysin content, and bacterial load. In the second set, survivor rats were submitted to an acute osmotic stimulus (hypertonic saline), and after 30 minutes the water intake and AVP secretion were analyzed. The sepsis-surviving rats did not show bacterial load in tissues, but their hypothalamic synaptophysin and Bcl-2 levels were decreased, and the cleaved caspase- 3 level was increased when compared with the control group. However, AVP secretion was significantly attenuated in the CLP survivor animals submitted to an acute osmotic stimulus. These results suggest that the persistent AVP impairment in sepsis survivor animals may be due to a hypothalamic dysfunction associated with a synaptic deficit and decreased anti-apoptotic protein expression. This article is protected by copyright. All rights reserved.

8.
J Neuroendocrinol ; 29(9)2017 09.
Article En | MEDLINE | ID: mdl-28836382

Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen-activated protein kinase (MAPK) pathway, which has previously been linked to Ang II-induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low-sodium diet consumption. An increase in extracellular signal-regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low-sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low-sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low-sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low-sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low-sodium diet groups. These data indicate that low-sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low-sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low-sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low-sodium diet consumption.


Appetite , Brain/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Sodium, Dietary , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Animals , Diet, Sodium-Restricted , Male , Rats, Wistar , Receptor, Angiotensin, Type 1/metabolism , Signal Transduction
9.
Neuroscience ; 322: 525-38, 2016 May 13.
Article En | MEDLINE | ID: mdl-26951941

The angiotensin II (ANGII) receptor AT1 plays an important role in the control of hydromineral balance, mediating the dipsogenic and natriorexigenic effects and neuroendocrine responses of ANGII. While estradiol (E2) is known to modulate several actions of ANGII in the brain, the molecular and cellular mechanisms of the interaction between E2 and ANGII and its physiological role in the control of body fluids remain unclear. We investigated the influence of E2 (40 µg/kg) pretreatment and extracellular-signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) cell signaling on the dipsogenic and natriorexigenic effects, as well as the neuroendocrine responses to angiotensinergic central stimulation in ovariectomized rats (OVX). We showed that the inhibitory effect of E2 on ANGII-induced water and sodium intake requires the ERK1/2 and JNK signaling pathways. On the other hand, E2 pretreatment prevents the ANGII-induced phosphorylation of ERK and JNK in the lamina terminalis. E2 therapy decreased oxytocin (OT) and vasopressin (AVP) secretion and decreased ERK1/2 phosphorylation in the supraoptic and paraventricular nuclei (SON and PVN, respectively). We found that the AVP secretion induced by ANGII required ERK1/2 signaling, but OT secretion did not involve ERK1/2 signaling. Taken together, these results demonstrate that E2 modulates ANGII-induced water and sodium intake and AVP secretion by affecting the ERK1/2 and JNK pathways in the lamina terminalis and ERK1/2 signaling in the hypothalamic nuclei (PVN and SON) in OVX rats.


Angiotensin II/metabolism , Drinking/physiology , Estradiol/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/physiology , Sodium, Dietary , Angiotensin II/administration & dosage , Animals , Central Nervous System Agents/administration & dosage , Central Nervous System Agents/metabolism , Drinking/drug effects , Estradiol/administration & dosage , Female , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , MAP Kinase Signaling System/drug effects , Ovariectomy , Oxytocin/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Random Allocation , Rats, Wistar , Supraoptic Nucleus/drug effects , Supraoptic Nucleus/metabolism , Vasopressins/metabolism
10.
Mol Cell Endocrinol ; 400: 102-11, 2015 Jan 15.
Article En | MEDLINE | ID: mdl-25451978

The phenotypic differentiation between oxytocin (OT)- and vasopressin (VP)-secreting magnocellular neurosecretory cells (MNCs) from the supraoptic nucleus is relevant to understanding how several physiological and pharmacological challenges affect their electrical activity. Although the firing patterns of OT and VP neurons, both in vivo and in vitro, may appear different from each other, much is assumed about their characteristics. These assumptions make it practically impossible to obtain a confident phenotypic differentiation based exclusively on the firing patterns. The presence of a sustained outward rectifying potassium current (SOR) and/or an inward rectifying hyperpolarization-activated current (IR), which are presumably present in OT neurons and absent in VP neurons, has been used to distinguish between the two types of MNCs in the past. In this study, we aimed to analyze the accuracy of the phenotypic discrimination of MNCs based on the presence of rectifying currents using comparisons with the molecular phenotype of the cells, as determined by single-cell RT-qPCR and immunohistochemistry. Our results demonstrated that the phenotypes classified according to the electrophysiological protocol in brain slices do not match their molecular counterparts because vasopressinergic and intermediate neurons also exhibit both outward and inward rectifying currents. In addition, we also show that MNCs can change the relative proportion of each cell phenotype when the system is challenged by chronic hypertonicity (70% water restriction for 7 days). We conclude that for in vitro preparations, the combination of mRNA detection and immunohistochemistry seems to be preferable when trying to characterize a single MNC phenotype.


Action Potentials/physiology , Neurons/metabolism , Oxytocin/metabolism , RNA, Messenger/metabolism , Supraoptic Nucleus/metabolism , Vasopressins/metabolism , Action Potentials/drug effects , Animals , Diet , Gene Expression , Male , Microtomy , Neurons/classification , Neurons/cytology , Neurons/drug effects , Oxytocin/genetics , Patch-Clamp Techniques , Phenotype , RNA, Messenger/genetics , Rats , Rats, Wistar , Single-Cell Analysis , Sodium, Dietary/pharmacology , Supraoptic Nucleus/cytology , Supraoptic Nucleus/drug effects , Tissue Culture Techniques , Vasopressins/genetics , Water Deprivation
11.
Braz J Med Biol Res ; 46(4): 327-38, 2013 04.
Article En | MEDLINE | ID: mdl-23579631

Several forebrain and brainstem neurochemical circuitries interact with peripheral neural and humoral signals to collaboratively maintain both the volume and osmolality of extracellular fluids. Although much progress has been made over the past decades in the understanding of complex mechanisms underlying neuroendocrine control of hydromineral homeostasis, several issues still remain to be clarified. The use of techniques such as molecular biology, neuronal tracing, electrophysiology, immunohistochemistry, and microinfusions has significantly improved our ability to identify neuronal phenotypes and their signals, including those related to neuron-glia interactions. Accordingly, neurons have been shown to produce and release a large number of chemical mediators (neurotransmitters, neurohormones and neuromodulators) into the interstitial space, which include not only classic neurotransmitters, such as acetylcholine, amines (noradrenaline, serotonin) and amino acids (glutamate, GABA), but also gaseous (nitric oxide, carbon monoxide and hydrogen sulfide) and lipid-derived (endocannabinoids) mediators. This efferent response, initiated within the neuronal environment, recruits several peripheral effectors, such as hormones (glucocorticoids, angiotensin II, estrogen), which in turn modulate central nervous system responsiveness to systemic challenges. Therefore, in this review, we shall evaluate in an integrated manner the physiological control of body fluid homeostasis from the molecular aspects to the systemic and integrated responses.


Body Fluids/physiology , Homeostasis/physiology , Neural Pathways/physiology , Neurosecretion/physiology , Neurotransmitter Agents/physiology , Signal Transduction/physiology , Animals , Brain Mapping , Humans , Osmolar Concentration
12.
Braz. j. med. biol. res ; 46(4): 327-338, 05/abr. 2013.
Article En | LILACS | ID: lil-671387

Several forebrain and brainstem neurochemical circuitries interact with peripheral neural and humoral signals to collaboratively maintain both the volume and osmolality of extracellular fluids. Although much progress has been made over the past decades in the understanding of complex mechanisms underlying neuroendocrine control of hydromineral homeostasis, several issues still remain to be clarified. The use of techniques such as molecular biology, neuronal tracing, electrophysiology, immunohistochemistry, and microinfusions has significantly improved our ability to identify neuronal phenotypes and their signals, including those related to neuron-glia interactions. Accordingly, neurons have been shown to produce and release a large number of chemical mediators (neurotransmitters, neurohormones and neuromodulators) into the interstitial space, which include not only classic neurotransmitters, such as acetylcholine, amines (noradrenaline, serotonin) and amino acids (glutamate, GABA), but also gaseous (nitric oxide, carbon monoxide and hydrogen sulfide) and lipid-derived (endocannabinoids) mediators. This efferent response, initiated within the neuronal environment, recruits several peripheral effectors, such as hormones (glucocorticoids, angiotensin II, estrogen), which in turn modulate central nervous system responsiveness to systemic challenges. Therefore, in this review, we shall evaluate in an integrated manner the physiological control of body fluid homeostasis from the molecular aspects to the systemic and integrated responses.


Animals , Humans , Body Fluids/physiology , Homeostasis/physiology , Neural Pathways/physiology , Neurosecretion/physiology , Neurotransmitter Agents/physiology , Signal Transduction/physiology , Brain Mapping , Osmolar Concentration
13.
J Neuroendocrinol ; 25(3): 281-91, 2013 Mar.
Article En | MEDLINE | ID: mdl-23002791

The present study aimed to investigate the role of angiotensin II (Ang II) on sodium appetite in rats subjected to a normal or a low-sodium diet (1% or > 0.1% NaCl) for 4 days. During sodium restriction, a reduction in water intake, urinary volume and sodium excretion was observed. After a low-sodium diet, we observed decreased plasma protein concentrations and haematocrit associated with a slight reduction in arterial pressure, without any significant changes in heart rate, natraemia, corticotrophin-releasing hormone mRNA expression in the paraventricular nucleus and corticosterone levels. After providing hypertonic saline, there was an increase in saline intake followed by a small increase in water intake, resulting in an enhanced saline intake ratio and the recovery of arterial pressure. Sodium deprivation increased plasma but not brain Ang I and II concentrations. A low-sodium diet increased kidney renin and liver angiotensinogen mRNA levels but not lung angiotensin-converting enzyme mRNA expression. Moreover, Ang II type 1a receptor mRNA expression was increased in the subfornical organ and the dorsal raphe nucleus and decreased in the medial preoptic nuclei, without changes in the paraventricular nucleus and the nucleus of solitary tract after a low-sodium diet. Blockade of AT(1) receptors or brain Ang II synthesis led to a reduction in sodium intake after a low-sodium diet. Intracerebroventricular injection of Ang II led to a similar increase in sodium and water intake in the control and low-sodium diet groups. In conclusion, the results of the present study suggest that Ang II is involved in the increased sodium appetite after a low-sodium diet.


Angiotensin II/physiology , Diet, Sodium-Restricted , Sodium/administration & dosage , Animals , Male , Radioimmunoassay , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction
14.
J Neuroendocrinol ; 23(6): 481-9, 2011 Jun.
Article En | MEDLINE | ID: mdl-21470318

Secretion of vasopressin (VP), oxytocin (OT) and atrial natriuretic peptide (ANP) is an essential mechanism for the maintenance of hydromineral homeostasis. Secretion of these hormones is modulated by several circulating factors, including oestradiol. However, it remains unclear how oestradiol exerts this modulation. In the present study we investigated the participation of oestradiol in the secretion of VP, OT and ANP and in activation of vasopressinergic and oxytocinergic neurones of the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus in response to extracellular volume expansion (EVE). For this purpose, ovariectomised (OVX) rats treated for 7 days with vehicle (corn oil, 0.1 ml/rat, OVX+O group) or oestradiol (oestradiol cypionate, 10 µg/kg, OVX+E group) were subjected to either isotonic (0.15 m NaCl, 2 ml/100 g b.w., i.v.) or hypertonic (0.30 m NaCl, 2 ml/100 g b.w., i.v.) EVE. Blood samples were collected for plasma VP, OT and ANP determination. Another group of rats was subjected to cerebral perfusion, and brain sections were processed for c-Fos-VP and c-Fos-OT double-labelling immunohistochemistry. In OVX+O rats, we observed that both isotonic and hypertonic EVE increased plasma OT and ANP concentrations, although no changes were observed in VP secretion. Oestradiol replacement did not alter hormonal secretion in response to isotonic EVE, but it increased VP secretion and potentiated plasma OT and ANP concentrations in response to hypertonic EVE. Immunohistochemical data showed that, in the OVX+O group, hypertonic EVE increased the number of c-Fos-OT and c-Fos-VP double-labelled neurones in the PVN and SON. Oestradiol replacement did not alter neuronal activation in response to isotonic EVE, but it potentiated vasopressinergic and oxytocinergic neuronal activation in the medial magnocellular PVN (PaMM) and SON. Taken together, these results suggest that oestradiol increases the responsiveness of vasopressinergic and oxytocinergic magnocellular neurones in the PVN and SON in response to osmotic stimulation.


Estradiol/pharmacology , Hormones/metabolism , Neurons/drug effects , Animals , Arginine Vasopressin/metabolism , Cell Size/drug effects , Extracellular Fluid/drug effects , Extracellular Fluid/physiology , Female , Hypertonic Solutions/pharmacology , Neurons/physiology , Ovariectomy , Oxytocin/metabolism , Rats , Rats, Wistar , Secretory Pathway/drug effects , Synaptic Transmission/drug effects , Up-Regulation/drug effects , Vasopressins/metabolism
15.
Clin Exp Pharmacol Physiol ; 36(5-6): 495-500, 2009 May.
Article En | MEDLINE | ID: mdl-19673931

1. The use of angiotensin-converting enzyme (ACE) inhibitors during pregnancy is contraindicated because of their association with increased risks of fetopathy, including central nervous systems malformations. In addition, some reports have shown that renin-angiotensin system components are expressed differently during embryonic development and adulthood in the rat. 2. Because angiotensin II and its derivative peptides have been implicated in anxiety and modulation of nociception, the aim of the present study was to investigate whether inhibiting ACE during prenatal and neonatal periods would alter behavioural plasticity in adult male offspring rats. 3. Female Wistar rats were treated with captopril (2 mg/mL water; approximately 200 mg/kg per day) during pregnancy and lactation. At adulthood, the offspring were subjected to the open field, elevated plus maze, social interaction, forced swimming and tail flick tests. 4. Perinatal captopril treatment significantly increased ambulation (33%; P < 0.05) and decreased resting time (37.5%; P < 0.05) in the open field test. Perinatal captopril treatment did not alter any of the behavioural parameters of the elevated plus maze; however, captopril treatment did cause a significant increase in social interaction (75.3%; P < 0.05). In the forced swimming test, there was an increased latency period (102.9%; P < 0.001) and a decreased immobility period (38.7, P < 0.05) in rats treated with perinatal captopril. In the tail flick test, perinatal captopril treatment significantly reduced the latency time (26.3%; P < 0.01). 5. The data show that ACE inhibition during prenatal and neonatal periods affects behavioural responses in adult offspring rats, suggesting that ACE is required for the development of neural systems that are associated with adult anxiety and nociceptive behavioural responses.


Angiotensin-Converting Enzyme Inhibitors/adverse effects , Behavior, Animal/drug effects , Lactation , Pregnancy, Animal , Prenatal Exposure Delayed Effects/physiopathology , Algorithms , Animals , Behavior, Animal/physiology , Captopril/adverse effects , Drug Evaluation, Preclinical , Female , Freezing Reaction, Cataleptic/drug effects , Lactation/drug effects , Lactation/physiology , Male , Maternal Exposure/adverse effects , Maze Learning/drug effects , Pregnancy , Pregnancy, Animal/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Rats , Rats, Wistar , Social Behavior , Swimming
16.
Clin Exp Pharmacol Physiol ; 36(8): 803-9, 2009 Aug.
Article En | MEDLINE | ID: mdl-19215232

1. Recently, we demonstrated that oral captopril treatment improved diastolic function and attenuated cardiac remodelling after myocardial infarction (MI) in rats. Considering the feasible role of the brain renin-angiotensin system (RAS) in heart failure, in the present study we investigated the role of the captopril injected intracerebroventricularly (i.c.v.) on the progression of cardiac dysfunction. 2. Male Wistar rats underwent experimental MI or sham operation. Infarcted animals received daily i.c.v. injections of captopril (approximately 200 mg/kg; MI + Cap) or saline (MI) from 11 to 18 days after infarction. Electro- and echocardiogram assessments were performed before and after i.c.v. treatment (10 and 18 days after MI, respectively). Water and hypertonic saline ingestion were determined daily between 12 and 16 days after MI. 3. Electrocardiograms from the MI and MI + Cap groups showed signs that resembled large MI before and after i.c.v. treatment. However, despite similar systolic dysfunction observed in both groups, only captopril-treated rats exhibited reduced left ventricular (LV) dilatation and improved LV filling, as assessed by echocardiograms, and low levels of water ingestion compared with the saline-treated control group. 4. The results of the present study suggest that the brain RAS may participate in the development of cardiac dysfunction induced by ischaemia and that inhibition of the brain RAS may provide a new strategy for the prevention of diastolic dysfunction.


Brain/metabolism , Diastole/drug effects , Myocardial Infarction/metabolism , Renin-Angiotensin System/drug effects , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Brain/drug effects , Captopril/administration & dosage , Captopril/pharmacology , Captopril/therapeutic use , Disease Models, Animal , Echocardiography , Electrocardiography , Injections, Intraventricular , Male , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Rats , Rats, Wistar
17.
Exp Physiol ; 93(8): 1002-10, 2008 Aug.
Article En | MEDLINE | ID: mdl-18441334

The present work was carried out to investigate the role of angiotensin II type 1 (AT(1)) receptors in nocturnal thirst and sodium appetite induced by classical models of osmotic and sodium depletion challenges in ovariectomized rats chronically treated with oil or oestradiol benzoate (EB, 20 microg per animal, s.c. daily). In both conditions, the animals were given saline or losartan (108 nmol per animal, i.c.v.), a selective AT(1) receptor blocker. Oestrogen therapy significantly reduced the water intake induced by water deprivation, sodium depletion produced by frusemide injected 24 h before, and s.c. acute frusemide plus captopril injection (FUROCAP protocol), with no alteration following s.c. hypertonic saline injection. In contrast, EB therapy decreased the salt intake induced by sodium depletion and FUROCAP protocols, with no alteration following water deprivation and s.c. hypertonic saline injection. Central AT(1) blockade inhibited the dipsogenic response induced by water deprivation, osmotic stimulation, chronic sodium depletion and FUROCAP protocols and inhibited the natriorexigenic response induced by sodium depletion in ovariectomized rats. Oestrogen therapy significantly attenuated the losartan-induced antidipsogenic and antinatriorexigenic actions following sodium depletion and FUROCAP protocols. These results indicate that ovariectomized rats express increased AT(1) receptor signalling related to thirst and sodium appetite responses. Oestrogen therapy and brain AT(1) receptor blockade weakened or markedly decreased the behavioural responses during the nocturnal period, a time at which brain angiotensinergic activity is expected to be more prominent. Finally, we demonstrated through different experimental protocols a clear-cut influence of oestrogenic status on the behavioural AT(1)-induced signalling response.


Brain/metabolism , Drinking/drug effects , Estrogens/pharmacology , Hyponatremia/physiopathology , Receptor, Angiotensin, Type 1/metabolism , Signal Transduction/drug effects , Thirst/drug effects , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Captopril/pharmacology , Contraceptive Agents/pharmacology , Disease Models, Animal , Diuretics/pharmacology , Drinking/physiology , Estradiol/analogs & derivatives , Estradiol/pharmacology , Female , Furosemide/pharmacology , Losartan/pharmacology , Ovariectomy , Rats , Rats, Wistar , Signal Transduction/physiology , Thirst/physiology
18.
Exp Physiol ; 92(5): 923-31, 2007 Sep.
Article En | MEDLINE | ID: mdl-17591682

The present study was carried out to assess the influence of noradrenergic stimulation of the midbrain dorsal (DRN) and median raphe nuclei (MRN) on urinary volume and electrolyte excretion in hydrated rats. Wistar rats were implanted with a guide cannula into the MRN or DRN and then submitted to two intragastric administrations of water in order to attain an increased diuresis. The following treatments were performed. (1) Intra-DRN microinjections of saline (0.2 microl), alpha(1)-adrenergic agonist phenylephrine (PHE, 0.49 and 4.9 nmol in 0.2 microl), alpha(2)-adrenergic antagonist idazoxan (IDZ, 0.42 and 4.2 nmol in 0.2 microl) or the alpha(1)-adrenergic antagonist prazosin (PRZ, 0.24 and 2.4 nmol in 0.2 microl). (2) Intra-MRN microinjections of saline, IDZ (4.2 nmol in 0.2 microl), PHE (4.9 nmol in 0.2 microl) or PRZ (2.4 nmol in 0.2 microl). Urine samples were subsequently collected over 120 min at 20 min intervals for photometric measurement of sodium and potassium. Intra-DRN administration of PHE and IDZ significantly increased the urinary volume, natriuresis and kaliuresis. Intra-DRN microinjection of a higher dose of PRZ reduced the urinary volume and both sodium and potassium excretion. Intra-MRN microinjections of PHE, IDZ or PRZ did not induce any significant effect on urinary volume or electrolyte excretion. These data suggest that the increase of tonic excitatory noradrenergic input conveyed to DRN influences the hydroelectrolyte homeostasis, possibly through 5-HTergic circuitry.


Norepinephrine/physiology , Potassium/urine , Raphe Nuclei/physiology , Sodium/urine , Water-Electrolyte Balance/physiology , Adrenergic alpha-Agonists/pharmacology , Adrenergic alpha-Antagonists/pharmacology , Animals , Diuresis/drug effects , Diuresis/physiology , Drinking/physiology , Idazoxan/pharmacology , Male , Microinjections , Natriuresis/drug effects , Natriuresis/physiology , Phenylephrine/pharmacology , Prazosin/pharmacology , Raphe Nuclei/drug effects , Rats , Rats, Wistar , Urine , Water-Electrolyte Balance/drug effects
...